Differentiability of quadratic BSDE generated by continuous martingales and hedging in incomplete markets
نویسندگان
چکیده
In this paper we consider a class of BSDE with drivers of quadratic growth, on a stochastic basis generated by continuous local martingales. We first derive the Markov property of a forward-backward system (FBSDE) if the generating martingale is a strong Markov process. Then we establish the differentiability of a FBSDE with respect to the initial value of its forward component. This enables us to obtain the main result of this article which from the perspective of a utility optimization interpretation of the underlying control problem on a financial market takes the following form. The control process of the BSDE steers the system into a random liability depending on a market external uncertainty and this way describes the optimal derivative hedge of the liability by investment in a capital market the dynamics of which is described by the forward component. This delta hedge is described in a key formula in terms of a derivative functional of the solution process and the correlation structure of the internal uncertainty captured by the forward process and the external uncertainty responsible for the market incompleteness. The formula largely extends the scope of validity of the results obtained by several authors in the Brownian setting, designed to give a genuinely stochastic representation of the optimal delta hedge in the context of cross hedging insurance derivatives generalizing the derivative hedge in the Black-Scholes model. Of course, Malliavin’s calculus needed in the Brownian setting is not available in the general local martingale framework. We replace it by new tools based on stochastic calculus techniques. AMS subject classifications: Primary 60H10; secondary 60J25.
منابع مشابه
Solvability of Backward Stochastic Differential Equations with quadratic growth
In this paper we show a general result of existence and uniqueness of Backward Stochastic Differential Equation (BSDE) with quadratic growth driven by continuous martingale. Backward stochastic differential equations have been introduced by Bismut [1] for the linear case as equations of the adjoint process in the stochastic maximum principle. A nonlinear BSDE (with Bellman generator) was first ...
متن کاملQuadratic Hedging and Mean-Variance Portfolio Selection with Random Parameters in an Incomplete Market
This paper concerns the problems of quadratic hedging and pricing, and mean-variance portfolio selection in an incomplete market setting with continuous trading, multiple assets, and Brownian information. In particular, we assume throughout that the parameters describing the market model may be random processes. We approach these problems from the perspective of linear-quadratic (LQ) optimal co...
متن کاملBounded Solutions to Backward Sde’s with Jumps for Utility Optimization and Indifference Hedging
We prove results on bounded solutions to backward stochastic equations driven by random measures. Those bounded BSDE solutions are then applied to solve different stochastic optimization problems with exponential utility in models where the underlying filtration is noncontinuous. This includes results on portfolio optimization under an additional liability and on dynamic utility indifference va...
متن کاملAn Example 63 The Two { Period Model 103
We develop a new approach to pricing and hedging contingent claims in incomplete markets. Mimicking as closely as possible in an incomplete markets framework the no{arbitrage arguments that have been developed in complete markets leads us to de ning the concept of pseudo{arbitrage. Building on this concept we are able to extend the no{arbitrage idea to a world of incomplete markets in such a wa...
متن کاملNon Quadratic Local Risk-Minimization for Hedging Contingent Claims in the Presence of Transaction Costs
This paper is devoted to the study of derivative hedging in incomplete markets when frictions are considered. We extend the general local risk minimisation approach introduced in [1] to account for liquidity costs, and derive the corresponding optimal strategies in both the discreteand continuous-time settings. We examplify our method in the case of stochastic volatility and/or jump-di usion mo...
متن کامل